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Jeremiah:  
Have you ever thought about the 37 trillion cells quietly at work inside of your body?   
  

[Curious music]  
  
To enter a cell, you’d need to shrink down to be 0.002% the width of a human hair.   
Yet once you slip past the membrane and go inside, it’s like a bustling metropolis: mitochondria 
whir like power plants, proteins fold and unfold, and messages shoot through the cytoplasm like 
neon signs.   
  
At the center lies the nucleus, a tightly coiled library holding the genome – 3 billion letters of DNA, 
the instructions for building you.   
  
Sometimes, something happens with those instructions – a genetic mutation, a virus, or bacteria 
might do some damage to a part of a cell. That could lead to a disease or disorder.     
  
Only a few decades ago, this code was invisible to us. But today, we’re not only reading this genetic 
library, but appreciating the nuances of each individual cell.   
  
We’re uncovering new things we can learn about what makes us tick, which can help scientists 
discover new medicines and treatments.  
  

[Theme Music]  
  
Welcome to season four of Science Will Win. I’m your host, Jeremiah Owyang. I’m an entrepreneur, 
investor, and tech industry analyst. I’m passionate about emerging technologies and the ways they 
can shape our world.   
  
Last season, we talked about how Artificial Intelligence can help the scientific community address 
the rise of antimicrobial resistance.   
  
But this season, we’re diving deeper into that nexus of biology and technology, and exploring the 
ways artificial intelligence has had, and will have, an impact on the potential future of drug 
discovery.   
  
We’re taking you on a tour through history to learn about the development of three key elements 
that have helped form the powerful AI systems we have today   
– data, hardware, and software.   
  
We’ll be talking to historians and researchers across a variety of fields, to understand how each of 
these three elements contributed to making strides in drug discovery and development – and why 
each of them are an essential piece of the ongoing AI revolution in medicine.   



  
Today, we’re talking about data.  
  

[Theme ends]   
  
Today, scientists have access to an unprecedented amount of data: There are molecular 
measurements from cells and genomes, and vital biological data collected through surveys, 
clinical trials, and the growing expanse of databases and biobanks.   
  
But how did we get here? And how exactly does data about our biology contribute to drug 
discovery?  
  
To understand why data is so vital to drug discovery, we need to go back to the early days of drug 
discovery itself.  
  

[Music]  
  
The oldest approach to drug discovery was… serendipity.  
  
Last season, you may remember we talked about how penicillin came to be. The example applies 
here too – just imagine, a cluttered London laboratory in 1928.   
  

[Creaky door shuts, curious music]  
  
Alexander Fleming returned from vacation to find a petri dish he’d accidentally left uncovered.   
  
The dish, smeared with Staph bacteria, now had a curious blotch of mold growing in one corner. 
Around the mold, the bacteria had retreated.   
Fleming peered closer and realized something extraordinary: the mold was releasing a substance 
that killed the bacteria.   
  
Fleming’s discovery of penicillin was not the result of analyzing reams of data, but rather a lucky 
encounter. And it wasn’t an anomaly.   
  
This story is a glimpse into how early drugs were often discovered: chance observations.  
  
 

Well, I'm a young scientist by drug discovery standards, so I want to be respectful to my 
elders, but the way that I think about it is, in the previous generation of drug discovery and 
development, you usually had to start first with a compound that you thought might have 
some activity and you frequently went looking for the biology that that activity was 
appropriate for.   

  
That’s Kellie Kravarik, Associate Research Fellow and Cellular Genomics Group Leader for Systems 
Immunology at Pfizer.  

  
Kellie:  



We didn't understand biology enough to ask the question the other way round, which is to 
say, “I have this biology, I think I know what's gone wrong and I want to develop a drug for 
that.” But the more we understand about the biology, the more we can actually ask those 
questions from both directions.   

  
At Pfizer, Kellie helps gather a ton of cell data to help contribute to treatments in the areas of 
inflammation and immunology.  
  
This is to say, she helps researchers at Pfizer ask the right questions from both directions, with a 
“biology-driven” approach – that’s where we use our understanding of the biological basis of 
disease to inform the treatments we try to create.   
  
In Alexander Fleming’s day, drug discovery was “phenotype-driven” – that means, researchers 
would find a potentially useful compound with an effect on the body, and then find what it’s good 
for.   
  
That usually results in treating the symptoms of disease more than the underlying cause.  
  
So how did we get to the biology-driven approach that gave rise to jobs like Kellie’s?   
  
It took decades of learning about the processes of the cell alongside advancing technology. But at 
the beginning, progress was slow, and data was limited.  
  

Kellie: 
Yeah, historically, in the forties, fifties and sixties, when I think a lot of old school drug 
development was initiated, data was something you wrote in a lab notebook.  
  

The shape of DNA was discovered in 1953, but the idea of “sequencing” DNA, understanding what 
was inside of it, and how it actually worked, was still decades away.   
  

Miguel: 
And the thing is that sequencing, so was a technique that was first applied to proteins 
rather than DNA. So during the 1940s and fifties, it was a technique to determine the 
sequence of amino acids of proteins. And at that point, it was a technique that was very 
artisanal, very manual, and was just used very small scale, to determine, uh, relatively 
short sequences.  

  
That’s Miguel Garcia-Sancho.  
  

Miguel:  
I am a lecturer and researcher at the University of Edinburgh in the UK. And I've been 
working for several years now on the history of genomics, biotechnology, and 
bioinformatics. And more recently, I'm interested as well in the forensic use of DNA data 
and in the history and the sociology of, uh, genetic and genomic data and databases more 
generally.  

  
Miguel is the co-author of A History of Genomics across Species, Communities and Projects… 
along with James Lowe.  



  
James: 
I’m James Lowe, I'm a research fellow currently at the University of Exeter in the uk. 
Previously worked, uh, at the University of Edinburgh in Scotland, uh, working on a 
reasonably long-term project on the history and development of genomics. And I'm 
generally interested in, you know, variation of living things, be it in genetics, genomics, or, 
or my current project, which looks at, uh, AI and healthcare.  

  
Miguel and James will help usher us through the history of how our understanding of the genome 
developed over time.  
  
The man who first applied this particular sequencing technique to proteins was Frederik Sanger. He 
first sequenced the amino acids of insulin in 1954.   
  
As Miguel said, amino acids are the building blocks of proteins. So, “sequencing” those amino 
acids means figuring out how proteins are constructed. Proteins, on the other hand, are the 
building blocks of cells, and work like Sanger’s began revealing specific biological molecules—like 
enzymes, hormones, or receptors—that played critical roles in disease.  
  
This knowledge helped researchers treat certain cancers by inhibiting the enzymes involved in 
cancer cell growth. It was an early step toward a "biology-first" approach, but it was still limited by 
our incomplete understanding of biology and genetics.  
  
Then, in 1977, Sanger went on to sequence DNA for the first time – starting with the DNA of a virus.   
  

[Music]  
  
That’s right – DNA sequencing didn’t start with the human genome. But understanding the DNA of 
bacteria and viruses can also help scientists understand diseases better, by breaking down the 
causes of disease.  
  
Researchers moved on to sequencing segments of human DNA   
– but the Sanger sequencing method remained too-time-and labor-intensive to scale.   
  
Scientists had to gather a bunch of cells and mix them up, then “print” these long strands of DNA 
onto X-ray film and manually read each letter, recording them by hand.   
With this method, sequencing the whole human genome would take… over 150,000 years.  
  
To expand our knowledge enough to improve drug discovery, we would need to go a lot faster.   
  

Miguel: 
And at that point in the seventies and in the eighties, it was very important that they started 
converging with computing methods and with computer technologies. And especially with 
algorithms and other computer applications that were developed to process like strings of 
information. So, like, linear sequences of discrete units, for example, a text is a string of 
information. So the first computer applications that were used to to analyze DNA 
sequences were adapted from the first, uh, word and text processors.  
  



By the mid 1980s, thanks to this adaptation, computers were able to read strings of DNA.  
  

Miguel: 
So these, uh, computer applications, allow, like to, to detect, uh, patterns in a sequence to, 
to, for example, put together different partial sequences into a broader sequence. And that 
was the first time in which sequences started growing. And it started scaling up.   

  
In 1986, the first automated sequencer was released, significantly increasing efficiency and 
accuracy.   
  

[Bar ambience, murmuring]  
  
That same year, in a Maryland bar, the geneticist Thomas H. Roderick sat around a table with nine 
of his colleagues. They had just come from a genetics lecture – and after a few beers, they started 
brainstorming a title for a brand new genetics journal.  
  

[Music picks up]  
  
Nothing had quite the right ring to it. But deep into the second pitcher of beer, Thomas piped up – 
“Genomics?”  
  
We know now just how well the name stuck. It may have been inspired by the word “genetics,” 
Thomas’s field – but most of all, the word suggested a completely new field of study involving 
holistic techniques.   
  
There had been murmurings about the possibility of sequencing the entire human genome for 
some time. But with new automated methods available, that possibility was more real than ever – 
and genomics offered the field a name.  
  

James: 
What was novel about genomics was the ambition to move beyond particular genes for 
particular maybe clinical genetics purposes, uh, and move beyond that to, to the whole 
genome as an object, so all the DNA in a particular organism. So it's that sort of idea of 
comprehensiveness that moves beyond simply tackling one gene at a time.  
  

While we used to look at very specific DNA segments, genomics is about looking at the whole 
picture.   
  
That’s a big step up in the amount of data we could record.   
  
Genomics became the first discipline within the umbrella term we call “omics” – since all the 
terms under the umbrella end with that suffix. For all “omics,” comprehensiveness is key.  
  

James: 
And, and this is one of the significant things that's come out, is it can tell you things about 
the evolution of organisms. It can tell you something about diversity and variation within 
organisms. It can also tell you about the differences and similarities between different 
species. So if we know the corresponding regions of DNA, for those particular organisms, 



we might be able to actually identify genes in their particular roles in physiological 
processes in humans. So it's this ideal of comprehensiveness that really characterizes 
omics.  

  
As genomics advanced into the 90s, researchers began to identify the genes and proteins involved 
in specific diseases. This enabled them to ask the question Kellie Kravarik proposed earlier: “If 
this protein or pathway is causing the disease, can we design a drug to target it?”  
  
In 1990, the famous Human Genome Project officially began. It was a collaboration between 
thousands of scientists across universities, disciplines, and at least five countries.   
  
The publicly funded project used Sanger’s sequencing method, elevated by automated sequencing 
techniques to enable a new level of efficiency.   
   
The mission? Sequence all 3 billion base pairs of the human genome and identify all 20- to 25,000 
human genes.  
  

Miguel: 
it was believed that by having the whole sequence of information of the human genome, 
basically drug discovery would be easier because it would be just a matter of, uh, picking 
the information of the region of the gene, uh, the drug was, uh, supposed to interact with. 
And uh, basically, uh, being able to, to inform the design of the molecule that the drug 
would be with that information.  

  
By 2003, the scientists declared they had sequenced 99% of the genome with an accuracy of 
99.99%, marking the project's formal conclusion.   
  
By sequencing the human genome, scientists could systematically identify the genes, proteins, 
and pathways involved in disease.   
  
This knowledge enabled a true biology-first approach to drug discovery.  
  

[Music]  
  
However, it soon became clear that the genome sequenced in the   
Human Genome Project was not enough by itself to make creating medicine as easy as originally 
hoped.   
  
Here’s Miguel again.  
  

Miguel: 
Genomic data is important as a reference, as a basic scaffolding on which you can anchor 
the particular uh variance that uh your drug uh is meant to address.   
(...)  
 But having more local variants that are connected to the conditions that the drugs are 
supposed to address, is very important.  

  



In other words, to make these new findings applicable for a lot of drug discovery, you need to be 
able to compare the so-called “normal” human genome to something.   
  
And what’s more, it turned out that the minor differences in DNA between people could really add 
up when it came to understanding disease.  
  

James:  
74% of the DNA used in the sort of original reference genome, came from one person, uh, 
an anonymous male who answered a newspaper advertisement in upstate New York in 
1997. Uh And this was because it was believed that between any two humans anywhere in 
the world, the similarity of the DNA sequence would be 99.9%. So it didn't matter. We didn't 
need to have a representative sample, a sample that included people with known genetic 
diseases or not.  
  

They also thought they didn’t necessarily need genetic samples from women, or people from other 
places other than America.   
  

James:  
And so there was a lot in that sort of DNA that was recorded in the initial reference genome 
that wasn't representative of particular genetic variants or, you know, that, that are 
associated with a disease that are prevalent or more prevalent in other populations. ... The 
reference genome is the standard. It's not a fixed thing. It's been updated all the time, and 
reference genomes get updated all the time according to the particular aims of the 
communities that are involved in managing them.  

  
Ever since the Human Genome Project, the scientific community has prioritized generating and 
sharing as much genome data as possible.   
  
This and the biology-first revolution allowed us to break barriers in drug discovery… but they also 
revealed how much we still had to learn.   
  
In the mid 2000s, Pfizer’s Kellie Kravarik started her career in genomics.  
  

Kellie: 
I came to be a scientist at the end of what I think was the first kind of golden age of 
genomics, which is what biology calls this data-forward practice. so the human genome 
project was completed when I was in middle school and all of my training to become a baby 
scientist really happened when that was known and something you could download from 
the internet. So I've never known a world where you could not measure biology in high 
dimension and high resolution.  

  
Even though sequencing was automated at this time, researchers were still using similar analysis 
methods to the scientists on the Human Genome Project and even Frederik Sanger: measuring a 
mixture of many cells.  

  
Kellie:  
For much of my career through really my PhD, we were essentially measuring smoothies of 
biology. This isn't an analogy I invented, but it's one commonly used. You know, you would 



take samples from a tissue culture experiment or a human patient and, and you would 
blend them up and you would measure all of the blended components.   
  

This smoothie method was leaps and bounds ahead of what was possible way back in the 1940s or 
1950s, but it still had limitations. Blending all of this data was good for measuring entire genomes, 
but it made it impossible to understand what made each cell unique.  
  

Kellie: 
They have lineages just like we do. Cells birth other cells and they talk to one another just 
like we do. And when you blend things up, you reduce that fundamental unit of life.   
  
There's not very much material in a single cell. So if you blend them all together, you add all 
the material from all the different cells and you have more to measure, you don't need an 
instrument that's as sensitive.   
  
And so part of the innovations was to get chemistries that were more and more sensitive to 
measure individual cells. Part of it was getting more sophisticated in our ability to 
understand that information, and part of it was just trusting that this was something that 
was possible to do.  

  
By the late 2000s and early 2010s, those sensitive instruments were developed, allowing 
researchers to break down information from within individual cells.   
  
This is called single-cell sequencing. This technique isn’t used to sequence an entire human 
genome on a broad level, but rather to understand what’s going on within particular cells.  
  
These new instruments and methods allowed both single-cell DNA and RNA sequencing. RNA 
helps turn the genetic code stored in DNA into action by telling the cell which proteins to produce.  
  
Sequencing the RNA of cells is called transcript-omics, another discipline under this umbrella term 
of “omics.” Today, omics have been taken to another level, with many more new ways to examine 
the cell.  
  

Kellie: 
 I think we've come to use omics as a shorthand for high dimension, high throughput 
because it can mean so many different things. And because specifically what we're 
measuring is the product of technology that's still updating. It's a little bit like we're listening 
to music on a computer and when I was young that meant a cd and then it meant a file on 
an MP3player, and today it means streamed from the cloud via an app. I think the 
measurements are still evolving, uh, but the point is that we now capture more properties 
of what it means to be a cell in more granular detail. And the practice of doing that 
systematically is the practice of omics.  
  

Using omics data, researchers might study proteins in healthy human kidney tissue to understand 
how these proteins behave, interact, and carry out their jobs in the kidney.   
  



Other researchers might study omics data to understand specific health outcomes,   
like how long someone with prostate cancer might survive, the risk of breast cancer coming back, 
or how well a patient might respond to a certain treatment.  
  
By using detailed omics data, researchers aim to create better tools to predict or understand 
diseases—tests that are more accurate than those based on traditional clinical methods.  
  

Kellie:  
The major advancement that's happened in the two thousands has been to move from that 
smoothie understanding of the world to actually measuring those cells one by one, letting 
them each tell us what is going on in them and letting us do the same computation that the 
human genome project enabled, but be able to do it on the millions and trillions of cells 
that are in and of our body.   
  

The single-cell sequencing Kellie and her colleagues use today aren’t reliant on blending cells 
together. She has another analogy for this new method:  

  
Kellie: 
(...) the analogy is a fruit salad format where you can actually say what came from the 
strawberry and what came from the grape. Uh, that has allowed us to understand this at a 
just a different level of complexity that we couldn't access before. And that means that 
some things really surprise us and some things really excite us. But either way, the closer 
we get to really understanding biology at this unit of life, the better we are able to develop 
drugs that help patients.  
  

But there’s still a lot of work to do, remember… There are a LOT of cells in the human body.  
  

Kellie:  
You cannot measure every cell in the world. It is not possible to do that. So we're still 
sampling very, very little, but because we've never been able to do it before, we're on this 
really exciting point in time where every measurement we make has a high chance of 
uncovering something we didn't know.  

  
Since the advent of single-cell sequencing and omics data, researchers in drug discovery have 
already taken advantage of this new information.   
  
At Pfizer, single cell transcript-omics contributes to huge datasets that allow researchers to train AI 
models and predict the best structure for medicines – including for diseases like COVID-19.   
  

Kellie: 
The measurements that we're now making in single cell dimensions are feeding machine 
learning and artificial intelligence models. The models are seeking to understand and 
basically describe disease biology and healthy biology as it really is. We know we will have 
achieved it when the models predict things that we can test in the lab. And so a lot of the 
day-to-day work is actually generating data to feed a model, training the model, and then 
asking the model to make some predictions that we then go back into the lab and test and 
then use that data to feed yet another model to improve it.  
(...)  



when we talk about it being at an inflection point, I think what we mean is that we're getting 
better at the measurements that feed the models. We're getting better at the way we create 
the models, we're getting better at the way the models produce results and then we're 
getting better at training them with additional information to improve upon them.  
  
[Music]  

  
New research techniques, more advanced computers, more sensitive instruments… all of these 
innovations have ushered in this modern data boom.  
  
But to actually use that data and have it lead to potential breakthroughs, collaboration is key. Kellie 
called out one example.  
  

Kellie: 
So there is a database called Geo, where virtually every sequencing file ever published in a 
journal from an author who had NIH funding has deposited that sequencing data for you to 
access and reanalyze. There are also large consortia efforts, including public and private 
consortia, like the accelerating medicines partnerships, where companies and academia 
have come together to co-fund research where we're intentionally sharing data pre-
competitively out into the public domain for everyone to use for commercial and non-
commercial use.  
  
Kellie:  
And I think that that's something that, all of academia is really committed to, but I think 
many people don't appreciate how much industry is also committed to that.  

  
Geo is far from the only data repository. The Sanger Institute, the European Bioinformatics 
Institute, the National Center for Biotechnology Information,   
and more all have accessible databases that help advance scientific knowledge around the world.  
  

[Transitional music]  
  
Let’s go all the way back to the cell from the beginning of the episode.  
  

[Same curious music from the beginning]  
  
The proteins, the DNA, the RNA, and all those messages traveling through the bustling metropolis. 
Today, science has decoded much of it, and harnessed that data to inform drug discovery.  
  
But there’s a lot more left to understand about that cell – today, we are just on the cusp of 
harnessing the understanding of a cell’s relationship with the others around it, and the specifics of 
what makes every single cell unique.  
  
That’s millions more points of data for scientists to break down.   
  
The story of biological data for drug discovery is an ongoing journey for knowledge.  And as James 
Lowe put it, so often, gaining more knowledge reveals just as much about what we have yet to 
discover.   



  
James: 
I think one of the challenges of drug discovery – anything to do with living beings is, once 
you think you've climbed, you know, a mountain of you know, you're gonna capture the 
complexity finally and be able to intervene in it… You realize you've just climbed a foothill 
because you see something like Everest beyond. But even that's gonna be a foothill. So I 
think it's, yeah, that the story never ends.   
  
James: 
It's, it's, it's open and it's also about, you know, dealing with complexity and, and variation, 
But it can also confuse you. Unless you've got something, some way to guide your way 
through the complexity.  

  
By now, I’m sure you are starting to realize that there are tons of complex data, and the analysis 
needed to bring this new information to drug discovery is also… very complex. Which brings us to 
artificial intelligence.    
  

Kellie:  
My field has really exploded from that place of kind of canonical science to something that 
looks a lot more like engineering and computer science a lot of the time, in part because 
we've benefited from the same technological evolutions, um, helping machine learning and 
artificial intelligence to be able to measure our biology in a lot more detail than we ever had 
before. So instead of measuring the color of a test tube, we're now able to measure every 
single cell in a tissue of a disease patient. We're able to ask what genes and proteins are 
present in that cell, um, and then we're able to ask how drugs and treatments for those 
diseases change those pathologies and, and help return patients to good health. And we're 
doing that now in not a test tube with color measurements, but really a thousand by 
thousand matrix of measurements that can only be understood by a computer or by 
algorithms crunching those measurements.  

  
[Music]  

  
Next time on Science Will Win:  
   
We’re going to get into the hardware innovations that made today’s AI-supported research 
possible.  
  
Because even with a high volume of detailed omics data,   
drug design and discovery is a time-intensive and complicated process.   
  
Plus, more data requires A LOT of storage. To make use of big data and all its possibilities, 
scientists need new tools at their disposal.   
  

Tor:  
People like to use the phrase, you know, what's the killer app for GPU? And there was a lot 
of more traditional computer systems folks who are questioning whether the GPU would be 
good at anything important.  



Initially, like when I started doing research looking into applications, this was a question, so 
what, what is this good for?  
Why would you wanna do this? So the answer is that if you write new applications that just 
have lots of parallelism, and it turns out there's this super important one called machine 
learning.  

  
Jeremiah:  
Science Will Win is created by Pfizer and hosted by me, Jeremiah Owyang. It’s produced by Wonder 
Media Network. Please take a minute to rate, review and follow Science Will Win wherever you get 
your podcasts. It helps new listeners to find the show.   
  
Special thanks to all of our guests and the Pfizer research & development teams. And thank you for 
listening!   
 


