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JEREMIAH: 

Let’s shrink down again, like we did in episode 1, and re-enter the human cell. There’s a 

lot going on in this bustling metropolis. Previously, we paid a visit to the nucleus: you 

know, the library that holds our genetic code, also known as the instructions for building 

you. Today, we’re visiting the ribosome.  

 

The ribosome is like a factory that converts the genetic code it receives from the 

nucleus into a string of amino acids, like a string of beads. These building blocks don’t 

remain as strings, though. They curl, twist, and fold into three-dimensional structures 

called proteins — the material that builds, repairs, and consists of the body's most basic 

and crucial components. And how a protein folds determines what its exact job will be in 

the body. 

 

Different shapes mean different jobs. A protein could be…an enzyme in saliva, breaking 

down starches and sugars as they enter the body. A protein could also be a hemoglobin 

carrying oxygen in the blood. Or it could be an antibody, helping to combat diseases in 

your immune system.  

 

Misfolded or unfolded proteins, as well as those that have been affected by mutations, 

can potentially lead to jobs not being done, which can manifest as certain diseases in 

the human body.  

 

Not long ago, the way proteins fold was all but a mystery to scientists. But being able to 

predict how a particular sequence of amino acids will form in 3D space has the potential 

to change how new drugs and treatments are developed.  

 

Thanks to breakthrough technologies, scientists know more about proteins, and the way 

they exist in three dimensions, better than ever before. It’s one crucial piece of the drug 

development puzzle.  

 

Welcome to Science Will Win. I’m your host, Jeremiah Owyang. I’m an entrepreneur, 

investor, and tech industry analyst. I’m passionate about emerging technologies and the 

ways they can shape our world.  

 

So far in this season, we’ve explored how innovations throughout history have brought 

us to where we are now. We talked about how drug discovery changed from a 

serendipity-based to data-based endeavor. Then, explored the powerful hardware and 
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smart software required to accommodate big data. Now, the door to the future of AI in 

drug discovery is wide open.  

 

Today, for our final episode, we’re looking toward the future, to understand where 

today’s advancements could potentially take us.  

 

Only around 12% of drugs successfully progress from phase 1 clinical trials to FDA 

approval. This is due to traditional methods of drug development that rely on a certain 

level of serendipity and trial-and-error. But, with newer, more targeted drug 

development strategies, this has the potential to change. 

 

Charlotte:  

As the technologies advance that enable us to actually understand the structure 

of the protein, like understanding your lock, so you could design your key, you 

can design your therapeutic, uh, molecule, that's been very transformational.  

 

JEREMIAH: 

That’s Charlotte Allerton, whom you heard from last episode. She leads preclinical and 

translational sciences at Pfizer. 

 

Charlotte’s work starts with understanding the unmet medical need in patients. And new 

datasets, and ways of interpreting those data sets, allow Charlotte and her team to 

predict how a particular treatment might assist in addressing those unmet medical 

needs. 

 

Charlotte:  

An explosion in different technologies I think have really opened up our 

understanding of human biology. Everything from the human genome project to 

some of the technologies that enable us to assess a number of different 

measures in cells the different omics measures that we can obtain. And all of that 

data collectively I think is leading to what is a true transformation in our 

understanding of human biology. 

 

How does that help? Well, I think it opens up different hypotheses on how to treat 

the disease and from that comes different ideas on the biology we need to 

moderate in order to be effective at treating the disease. So it translates to me 

from an explosion in data to a much larger numbers of ideas to treat disease. 

And I think increasingly a higher confidence in the success of those ideas in truly 

doing what we are hoping they're gonna do when we get into clinical 

development and ensuring that we truly are treating the disease. 

 

JEREMIAH: 
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In the early days, if Charlotte wanted to know whether or not a particular molecule or 

compound would make a potential new drug, she’d have to make it in a lab, testing to 

see how it interacted with proteins in the human body, and measuring all of its 

properties manually. That is a lot of time consuming labor.  

 

Charlotte: 

And now what I see is, uh, scientists are looking at all of the molecules they 

could make on a computer and then applying some of these machine learning 

and AI algorithms to inform them, okay, of all these molecules I could make, 

which are the ones that are most likely to be a clinical candidate, and then 

making those and, um, testing those in the laboratory. 

 

JEREMIAH: 

AI can assist in a process called virtual screening, that allows Charlotte and her team to 

understand a potential molecule before even making it. It helps them prioritize which 

molecules are most likely to become good medicines.  

 

Charlotte:  

Early in the process try and understand do we have a, a molecule that can block 

a certain protein? And sometimes we take the protein and we screen lots of 

molecules and we test lots of molecules and we see which block it at. Other 

times we can do that whole process virtually and we can have a predicted 

structure of the protein or potentially an actual structure of the protein, and then 

we can look at literally billions of potential molecules that we could make to see 

which computationally would be predicted to bind to that particular protein. And 

you can imagine doing that computationally is very efficient compared with 

actually running those experiments over millions of compounds in a laboratory 

and then looking at the data and deciding which ones, uh, should you follow up 

on.  

 

JEREMIAH: 

Predicting what molecules become good medicines requires predicting how those 

molecules will bind to proteins in the human body. And that can be helped along by 

being able to predict what the protein looks like. Essentially, making medicine is all 

about binding the right molecule to the right spot on the right protein, in order to 

modulate how that protein functions. So suffice it to say, understanding proteins is a big 

deal. Here’s Daniel Ziemek again from last episode, Vice President of Integrative 

Biology and Systems Immunology at Pfizer. 

 

Daniel:  

And at some point, the time comes where you want to either develop a, a 

chemical molecule or a so-called antibody, which is a little bit of a bigger 
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molecule that has certain properties that you wanna then use to, to inhibit the 

function of the protein you have selected. Right? So which of the many molecular 

machines that are doing their thing in your body right now do you wanna change 

to cure the disease you have? Right? Because presumably one of these little 

molecular machines, proteins, are not working the way they're supposed to. And 

one of the big things we usually do is we take out a specific one of these 

molecular machines that is not doing the right thing and that usually helps with 

the disease you have and kind of obviously, um, it, this works better if you know 

what this machine looks like 

 

JEREMIAH: 

Since the 1960s, scientists have been trying to figure out how to predict what shape 

proteins will form based on their amino acid sequences. The folding process is very 

complex, so for decades, this question remained unanswered.  

 

Daniel: 

It's interesting that, that we still don't know all the structures, um, of all the 

proteins in, in humans or, or in other animals. 

 

JEREMIAH:  

What scientists do know is that proteins are made up of long chains of amino acids, 

which are chugged out by the ribosome. And each amino acid is determined by a 

unique genetic code — a set of rules turning nucleotides in DNA and RNA into proteins. 

Genetic code is made up of endless combinations of the letters A, C, G, and T – which 

stand for the different nucleotide bases: adenine, cytosine, guanine, and thymine.  

 

Daniel:  

And one of the breakthrough happened when humans figured out how to read,  

whether the next position in this long, long word is an A, C, G, or T, and all of a 

sudden we could take bits and pieces of this long word and say, aha, it's A-AC-C-

G-G-T-T-T-T-C-C-C, right? And that was a big breakthrough in, in so-called 

sequencing technology that has revolutionized a lot about what data we have at 

our disposal to make progress.  

 

JEREMIAH:  

Decoding the order of the nucleotides in genetic code was one important breakthrough 

in biology. Depending on the configuration of code that comprises a protein, it will fold 

into a unique 3D structure.  

 

Daniel:  
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Proteins have to arrange themselves in three dimensional space and lots of 

physical forces come together to determine the ultimate shape. And that is not a 

simple algorithm. 

 

JEREMIAH: 

In 2020, huge progress was made on this front. A team of researchers at DeepMind 

successfully created a model called AlphaFold that could predict a protein’s final end 

shape. This model helped answer one of the holy grail questions of biology: how does a 

long line of amino acids configure itself into a 3D structure that becomes the building 

block of life itself?  

 

In October 2024, two scientists from DeepMind and a third from the University of 

Washington won a Nobel Prize for these huge advancements in protein structure 

prediction.  

 

Daniel: 

these AI mechanisms, these deep learning technologies seem to be able to find 

shortcuts that lets us quickly get from the beginning, from this sequence, from 

this long string to the final shape of the protein. So we do not have to simulate 

every little piece, which we could do in theory, but can't do so well in practice, 

and we find a shortcut that lets us jump to the conclusion. 

 

JEREMIAH: 

Daniel says the emergence of AlphaFold is due in part to the technology advancements 

that came before it: the availability of big data, as well as the machine learning models 

like AlexNet that could identify cat photos, and even ChatGPT.  

 

Daniel:  

All these different fields have used similar techniques and relied on availability of, 

of computational power, and that has sort of paved the way that a lot of the 

building blocks were there and they could be translated and tried out in this 

protein folding space.  

 

JEREMIAH: 

AlphaFold was made available for free, and DeepMind built an open database that 

provides access to 200 million protein structure predictions. It also regularly updates 

with structures for newly discovered protein sequences. So far, the AlphaFold database 

has over two million users in 190 countries — saving millions of dollars and millions of 

years in research time. 

 

Daniel:  
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AlphaFold woke people up to the possibilities that are there with this new AI 

technologies in this field. And this is really starting to come into pharmaceutical 

companies like Pfizer to directly, impact how we think about protein structure 

prediction, and then what we know about when we develop these, these,  

compound, we say these chemical molecules that can become future medicines 

or antibodies and where they bind to these proteins, because that enables us to 

do that much better than we used to do,  

 

JEREMIAH: 

Beyond understanding the 3D shapes within cells, it’s also important to drug design to 

understand where cells exist within tissues.  

 

Now, Dr. Raza Ali is a group leader at the University of Cambridge Cancer Research 

UK Institute. He’s also a pathologist. Basically, that means he looks at human tissue 

under a microscope to determine whether it’s normal, abnormal, or cancerous. But 

earlier in his career, Dr. Raza Ali was working at a lab in Zurich, Switzerland that 

invented a process that would become key to pharmaceutical science: spatial imaging.  

 

Raza: 

Up until that point, we'd really thought of cancers in two ways. Either it’s using 

very artificial and constrained models in the lab, namely, or immortalized cancer 

cell lines, which can, you can grow in a dish. And so that's a very limited view on 

the totality of human cancer  

 

JEREMIAH: 

And this method was successful for a long time. 

 

Raza: 

but pathologists had, you know, as I say, for over a hundred years, thought of 

tumors as, um, caricatures of normal tissue. So we look at in space how these, 

how these tumors have put, you know, disturbed normality and, and become very 

bizarre, um, representations of, of normal tissue. And, and so that involves the 

deviation from normality involves the interaction with, um, with normal tissues 

and normal, the normal immune response and so on.  

 

JEREMIAH: 

But the lab Raza worked at realized there was a new frontier in cancer research. That 

frontier is spatial omics.   

 

Raza: 

Well, in fact, it's something of a misnomer or a rebranding, if you like, because 

essentially all biology is spatial, all occurs in a spatial context. Okay. Nothing 
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occurs totally isolated and dissociated from its surrounding tissue or surrounding 

environments. but the reason it's come to the fore now is because a suite of 

technologies in the past 10 years have discovered and commercialized, which 

allow us to characterize particularly tissues, but also other settings under the 

microscope in much more detail than we have in the past.  

 

JEREMIAH: 

You might remember in episode 1, when Kellie Kravarik, Cellular Genomics Group 

Leader for Systems Immunology at Pfizer, talked about measuring the smoothies of 

biology.  

 

Kellie: 

You would take samples from a tissue culture experiment or a human patient 

and, and you would blend them up and you would measure all of the blended 

components. 

 

JEREMIAH: 

If bulk RNA sequencing, like Kellie was talking about, is a fruit smoothie, spatial omics is 

like a fruit tart — with each fruit individually placed in a particular configuration. A circle 

of blueberries around the edge, kiwi and mango fanned out in slices, a crown of 

strawberries in the center. The arrangement of the fruit is just as important as each 

individual piece of fruit itself. The same goes for cells — the arrangement of particular 

cells can be very informative when characterizing a tumor’s microenvironment. Here’s 

Raza: 

 

Raza: 

Nowadays we can see very high fidelity segmentation of single cells, for 

example, which previously hadn't been possible. That's enabling us to probe the 

biology of tissues, and particularly in biology of cancer with much greater, greater 

precision. The end result is a highly, um, quantitative detailed map of each 

image, which tells us about all the different cells contained in that, in that image, 

what their expression profiles are with respect to the antibodies we selected, and 

also what their morphology are. 

 

JEREMIAH: 

Here’s how spatial imaging works. 

 

The immune system partially consists of antibodies, whose job it is to bind to antigens 

and destroy them. The spot on the antigen where the antibody can bind is called the 

epitope. Raza and his team conduct epitope-based imaging, which allows them to 

characterize around 44-55 proteins within a particular section of tissue.  
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Raza:  

So a very thin piece of tissue, which essentially looks transparent and is sitting 

on a glass slide, is treated with all of these antibodies simultaneously. So those 

antibodies will then go and chase down the protein of interest that they target and 

stick to it. Um, and so we wash off all of the excess. And that leaves us with a, a 

piece of tissue, which contains lots of antibodies stuck to very specific, epitopes  

 

JEREMIAH: 

The antibodies, attached to the antigens via the epitopes, are tagged with metals. The 

antibodies are then ionized through a technique called imaging mass cytometry. This 

allows them to be counted more precisely. 

 

Raza:  

if you think of an old style television picture is made, made up of a, uh, cathode 

ray, sort of rastering across the screen.  

 

JEREMIAH: 

Ever wondered how old TVs work, or why a TV was sometimes called “a tube?” That’s 

due to the cathode ray tube inside, which was heated so that it emitted electrons. Then, 

the electrons beamed something called a raster pattern onto a glass surface to create 

the pixels that make up moving images.  

 

Raza: 

We essentially do something very similar except where the raster goes across 

the screen each time it's returning values across these 44 proteins. And so we 

have a stack of 44 images simultaneously for a given tissue. And that's 

essentially the data we then go on to process and try to understand.We subject 

those images to image analysis, which is highly automated, where we, uh, 

essentially segment the image very precisely so we know what different regions 

contain, particularly at the single cell level.  

 

JEREMIAH: 

Once they have these highly complex images, Raza and his team will look at different 

aspects of them, depending on the experiment.  

 

Raza:  

But often they are things which are associated with disease outcome. So whether 

somebody is at high risk of death or a low risk of death, or relapse, or with 

treatment response. So whether a given tumor is going to respond to a, a given 

treatment or not. And this technique has been shown to be particularly useful for 

looking at responses to treatments like immunotherapy, which are a relatively 

recent addition to the armamentarium, in breast cancer, for example. 
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JEREMIAH: 

From deep neural networks predicting protein folding structure to virtual spatial omics 

screening assisting in cancer research, implementing AI in drug research, discovery, 

and development involves several strategic steps.  

 

According to Enoch Huang, whom you’ve heard from throughout this season, there are 

four key areas where the field of pharmaceutical research and discovery have been 

particularly successful in developing and applying artificial intelligence. Those four areas 

are training data, infrastructure, computation algorithms, and practitioners.  

  

Enoch likens these four things to a car driving on a road. First is data, but not just any 

data, data that is processed with machine learning in mind. 

 

Enoch: 

So the analogy here is around fuel, right? Because you don't pump crude oil that 

you extract from the ground into your car. It needs to be processed in refineries 

to be gasoline or petrol, right? So this both the, the raw data as well as people 

who know how to process the data as input into machine learning models. 

 

JEREMIAH: 

Next is infrastructure.  

 

Enoch: 

So it's databases, it's software, it's computational resources. Here are the roads, 

the bridges and tunnels necessary for machine learning to happen at scale 

because you, you know, the, the cars, the drivers, they need to go places. They 

need. We need to be able to fuel our cars in pumping stations. We need to be 

able to, um, make the models usable. 

 

JEREMIAH: 

Then there’s access, adaptation and development of modern ML algorithms.  

 

Enoch: 

So here is, you know, the brain power and experts who understand the 

possibilities of machine learning developments in the broader field, but thinking 

how to adapt them to the problems that are germane for pharmaceutical R&D. 

And so here the product is sort of a more powerful engine that resides in the car. 

 

JEREMIAH: 
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Then comes the fourth, and maybe most important, component: the humans working 

collaboratively to drive all the other components forward. He refers to them as the 

skilled drivers.  

 

Enoch:  

Here you have computational practitioners that can use all this infrastructure, the 

tools, the powerful engines to drive projects. And so you need to have 

practitioners who understand the biology and the chemistry and the potential for 

these algorithms, these methods for the benefit of their portfolio. 

 

JEREMIAH: 

Marrying data, hardware, and software is what enables the newest innovations in drug 

discovery and personalized medicine through AI. Despite challenges, the use of AI in 

this field is primed for continued growth. As AI becomes more embedded into everyday 

research, we may only be at the tip of the iceberg. Here’s Daniel again.  

 

Daniel:  

Before you would have had to have a lot of money to find out the specific protein 

structure and then go from there. Now you can predict all these different 

structures and, and look through them and, and pick the one that that works best. 

So it I think opens the mind to different approaches of how we do drug discovery 

in specific areas. And that is still growing. I don't think we have understood how 

to best use a lot of these new AI methods, fully. 

 

JEREMIAH: 

The potential of these new technologies is only just emerging.  

 

Charlotte: 

If I was to fast forward to the future and say, what would I really like to be able to 

do, I think certainly the interrogation of human biology and predictive models 

based on the wealth of omics data that we already and will have more of 

available by then will be very enabling in everything from selecting the right 

proteins to modulate in the body, through to selecting the right patients to put into 

our clinical studies to determine whether a particular therapeutic, uh, works well 

or not. I think we're only just scratching the surface 

 

Raza: 

We're still only at the early phases of really understanding what's possible. 

 

Daniel: 

The pace of innovation is not slowing down as far as I can tell right now. So I 

think we'll have much, much deeper insight into, uh, the pathogenesis of disease. 
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So why do disease happen? And we will get more insights into how can we fix it 

with all these technologies. It's amazing. I think we live in the future. 

 

JEREMIAH: 

That’s all for this season of Science Will Win. Thank you so much for joining me on this 

journey. We hope you join us for future seasons!  

 

Science Will Win is created by Pfizer and hosted by me, Jeremiah Owyang. It’s 

produced by Wonder Media Network. Please take a minute to rate, review and follow 

Science Will Win wherever you get your podcasts. It helps new listeners to find the 

show.  

 

Special thanks to all of our guests and the Pfizer research and development teams. And 

thank you for listening!  


